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Cluster-variation —Pade-approximant method for the simple cubic Ising model
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The cluster-variation—Paedgpproximant method is a recently proposed tool, based on the extrapolation of
low- and high-temperature results obtained with the cluster-variation method, for the determination of critical
parameters in Ising-like models. Here the method is applied to the three-dimensional simple cubic Ising model,
and new results, obtained with an 18-site basic cluster, are reported. Other techniques for extracting nonclas-
sical critical exponents are also applied and their results compared with those by the cluster-variation—Pade
approximant method.

PACS numbsd(is): 05.50+q

The cluster-variation metho@VM) [1-3] is a hierarchy  ciple of equilibrium statistical mechanics. The approximate
of approximations that generalizes the well-known meanfree energy density depends on the density maimiatrices
field approximation and has been widely applied in the lasbf the largest clustés) entering the expansion, which com-
decades, mainly to study the equilibrium properties of claspletely determines the approximation. The simple cubic Ising
sical, discrete lattice models with short-range interactionsmodel has been investigated, using the CVM, by Kikydhi
The CVM results are more and more accurate as the size @f the NN pair, square and cube approximations, and by the
the clusters considered increasas least in a specific way, present authof8] in the star-cube approximation. Here |
see below; but the critical exponents always take the meanshall use the 18-point approximation which is obtained by
field (classical values. The issue of extracting nonclassicalchoosing as the basic cluster the 3x 2 cluster obtained by
critical exponents from mean field approximations has beefvining four cubes as in Fig. 1, which is the largest cluster
the subject of a certain amount of research work in recengver considered for this lattice. The choice of this cluster is
years. As far as the CVM is concerned, a few schemes hav@otivated by Schlijper’s observatid] that, due to the ex-
been proposed in recent years to give estimates of criticaktence of a transfer matrix for the model, accuracy can be
exponents from the CVM results. One of these schemes, th@creased by enlarging the basic clusterslinl dimensions
cluster-variation—Padapproximant  method (CVPAM)  only, whered is the lattice dimensionality. One could imag-
[4,5], was specifically devised for the CVM and exploits its ine a seriegthe generalization of the so-calléi series by
great accuracy at high and low temperatures by means of aikuchi and Brush[10]) of basic clusters made dfx L
extrapolation of the thermodynamic quantities based on Padg 2 sites, where fot. =2 one has the cube approximation,
approximants. for L=3 the present one, and far>3 approximations that

In the present paper | report on an investigation on the:annot be dealt with using current computers.

CVM apprOXImatlon for the IS|ng model on the Slmple cubic F0||0W|ng An [2] the (reduced free energy density to be
lattice with the largest basic clustét8 siteg ever consid-  minimized can be written in the form

ered. The results of this approximation are used to give non-
classical estimates of the three-dimensional Ising critical ex-
ponents, using mainly the cluster-variation—Pade

approximant method CVPAM). Other schemes, like the ¢ = 3K TH(S:1S:04) + Tr(01al0 012 — 2 Tr( 0+ 1N
coherent anomaly metho@CAM) [6] and an approach by (P1g) (515204) (P1gIn p1g) (P12IN p12)

Tomeand de Oliveird 7] are also considered. —Tr(pgIn pg)+Tr(pglnpg) +2 Tr(pgIn pg)
| shall study the Ising model on the simple cubic lattice,
with nearest-neighbofNN) interactions only, described by ~Tr(paInpa), @
the reduced Hamiltonian
7
H
s e " T
@ ®
whereK is the (reduced interaction energys;==*1 is the
usual Ising variable at sitg the summation runs on NN —
pairs, andkg andT are, as customary, Boltzmann’s constant — —
and absolute temperature, respectively.
The CVM is a variational method based on the minimiza- ® ®
tion of a free energy density which is obtaineg3] by trun-
cating the cumulant expansion of the exact variational prin- FIG. 1. The 18-point basic cluster and its subclusters.
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TABLE I. Comparison of various CVM estimates for the critical point with the best estimates.

Method Pair Square Cube Star cube 18 point Best estimates
[1] [1] [1] (8] (present [13-17
K¢ 0.20273 0.21693 0.21829 0.2187 0.2199 0.22165

sessed in several ways. For instance, | have compared in

where p,, denotes the density matrix of thepoint cluster Table | the presenK, value with those from other CVM
(see Fig. 1, while Tr(s;S,p,) is the NN correlation$;, and  approximations and with the best estimgte3—17. Another
s, being any NN sites on the square plaguette interesting check is the comparison, in Table II, of our mag-

The free energy density can be regarded as dependent oetization valuesn=(s;) with those given by the formula by
p1g Only, because the subcluster density matrices can be ddalapov and Blee [17], determined on the basis of high
fined as suitable partial traces @fs. Since the Hamiltonian precision simulations and finite size scaling. It is interesting
is classical, the density matrices are diagonal, and hence ot® observe that the best agreement between the two methods
free energy density depends, in principle, on thgdlagonal ~ occurs in the middle of the temperature range considered
elements ofp,5 corresponding to the spin configurations of [which lies within the temperature range=1—-K./K
the 18-point cluster. These elements are, however, not ak (0.0005;0.26), where Talapov and Béaegard their result
independent. First of all, the density matrices must be noras very accurafe For T=1/K=3.7 the two magnetizations
malized according to Ts;g= 1. In addition, many elements differ only by 107 7. For larger temperatures our results are
are degenerate because of the lattice symmetries. The nondeertainly less accurate than those by Talapov andeBlo
generatep,g elements turn out to be 17676, a rather smallwhile the inverse must be true for smaller temperatities
number if compared with $=262144. Taking into account result by Talapov and Bte is significantly smaller than 1 at
lattice symmetries the size of the problem is reduced by aery low temperatures and has a maximum arouhd
factor slightly smaller than 16, which is the number of ele-=1.85).
ments of the symmetry group of our 18-point basic cluster. In order to obtain nonclassical estimates of the critical
Finally, it must be observed that, can be defined in dif- exponents, | shall now apply the CVPAM according to the
ferent ways as a partial trace pfg. In order to ensure that rules outlined in4,5]. In the CYPAM one computes a ther-
these different traces yield the same density matrix one hagodynamical functior for a set of temperature values in a
to impose 1134 constraints on the elementspgf. Once  range where the CVM approximation can be regarded as
these constraints are satisfied no ambiguity is left in the defivery accurate. These values are then used as a basis for ex-
nition of the other subcluster density matrices. Thereforefrapolation by means of Padgproximants and their gener-
one is left with the problem of finding the minimum of a alizations.
function of 17676 variables, with 113deaving apart the As a first step | shall consider the low-temperature mag-
trivial normalization constraiftlinear constraints among netization as a function of the variabke=e™". In order to
them. The problem can be easily treated in the framework ofletermine a temperature range Xn,, in which the 18-point
the natural iteration methoNIM) [11,12, developed by CVM is very accurate, | compare it with a lower order CVM
Kikuchi for the solution of the CVM variational problem. approximation. Although the star-cube approximation is
The solution for a single value df (not too close to the slightly more accurate, | choose the cube approximation for
critical poind can be found on a modern personal computeithis purpose, since, as | mentioned above, the cube and 18-
in a time of the order of ten minutes. point approximations can be thought of as belonging to the

The accuracy of the present approximation can be assame series. Requiring that the magnetization difference is

less than the empirically determings] thresholde= 102, |
TABLE 1. Comparison of our estimate of the magnetization obtainX,,,=0.75. The functiom(x) now has to be extrapo-

with that by Talapov and Ble. lated to estimate its singular properties, taking into account
- also confluent singularities, which is corrections to scaling.
T=1K m (present work m (Talapov and Blee [17]) To this end | use Adler's generalizatiof$8—20, usually

denoted byM1 andM2, of the ordinary Padapproximant

2‘51 g:ggggii? g:gggéggg methoo_l(l recall that ar{L,_M] Padeapproximant is simply
26 0.8616750 0.8616735 thg ratio of two polyn(_)mlaI§ of degrele and M [21,22).

' ' ' Given a functiorF(x) with a singularity that can be assumed
3.7 0.8399256 0.8399255 of the form (x,—x) [ 1+ a(x.— x)1], methodM 1 consid-
3.8 0.8148173 0.8148161 ers Padeapproximants to the logarithmic derivative of the
3.9 0.7855490 0.7855416 function
4.0 0.7509519 0.7509251
4.1 0.7092094 0.7091249 dF
4.2 0.6572414 0.6569722 B(OX)=NF(X) = (Xe=X) g )
4.3 0.5891051 0.5881361 X
4.4 0.4905811 0.4859045
45 0.3067063 0.2378014 for assignedx. and A. The dominant singularity in

(d/dx)InB(x) is a pole atx. with residuex—A, if A;<1
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and A —1 otherwise. MethodVi2 considers instead, for as-
signedx, andA,, Padeapproximants to
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FIG. 2. A; vs B plot obtained by methotf1,
for T,=4.512(a), 4.513(b), 4.514(c), and 4.515
(d), using [L,M] approximants with L

<5, L—1<M<L+1.

| tried to analyze the high-temperature susceptibility data
(which typically give much better results than the low-

temperature onein the same way. | considered the suscep-

dinF

x |41
G(y)=—-Ai(y—-1) , Y=1—(1——) )

Xc

tibility as a function of the variablev=tanhK and deter-
mined a regiorw<w,,,, of the disordered phase in which
the 18-point CVM approximation can be regarded as very

accurate by comparing the NN correlatiofwhich is

which should converge ta for y=1. In the CVPAM, the
functiond In B/dx or G(y) is evaluated at. + M + 1 equally
spaced pointX,=Xma—NoX, x=0,1,...L+M and then

bounded, and hence is better than the susceptibility for such
a tes} with that given by the cube approximation. The two
estimates differ by less than=10"° whenw<w,=0.13.

an[L,M] Padeapproximant is determined by interpolation. Unfortunately, both methoddl 1 andM2 failed to converge
The value of the spacingx must be adjusted empirically so and | had to resort to ordinary Padpproximants for the
that the sets of linear equations which must be solved for théogarithmic derivative of the susceptibility. The points for
interpolation are not badly conditioned. For the magnetizathe interpolation were chosen as described previously, with a
tion, the best conditioned sets of equations are obtained fdiPacingow=0.003. Results for the critical exponeptfrom

ox=0.015.

[L,L] approximants biased with the above estimatesTfor

Applying methodM 1 to our magnetization estimates we are reported in Table Ill. Also including results frorh,L

have obtained the correction to scaling exponaptas a
function of the critical exponeng for several values of the
trial critical temperaturd ;= 1/K... It is known[20] that the

+1] approximants | can conclude 1.23%<1.248, which
again is consistent with the most recent estimates.
Finally, | have tried to analyze the magnetization data by

plots given byM1 have a different curvature above and be-means of other techniques, namely the CA@fland a simi-

low the critical temperature. In the ordered phase Mhe
versusg plot is bent upward, while in the disordered phase it

lar approach by Tomand de Oliveird 7].

is bent downward. Using this criterion we can locate the TABLE Ill. Critical exponenty from biased]L,L] approxi-
critical temperature in the range 4.547.<4.515, which mants.

corresponds to 0.22148.=<0.22163, in agreement with T 4512 4513 4514 4515
the most recent estimat¢$3—17. From the corresponding D ¢ ' ' ' '
plots, reported in Fig. 2, one reads the estimates G323

<0.332 for the magnetization critical exponent and 0.75 4 1.24748 1.24520 1.24296 1.24076
<A;<0.82 for the correction to scaling exponent. As in the 5 1.24748 1.24519 1.24289 1.24058
case of the face-centered-cubic lattj&d, the critical expo- 6 1.24748 1.24502 1.24217 1.23895
nent result is consistent with recent estimdte3,17], while 7 1.24749 1.24505 1.24228 1.23922
the correction to scaling one is substantially higher. Method 8 1.24748 1.24482 1.24155 1.23769
M2 does not provide a clearcut way to estimdtg but 9 1.24749 1.24483 1.24156 1.23769
using the result byM1 as an input we getsee Fig. 3 10 1.24746  1.24487  1.24207  1.23905

0.322<3<0.331 and 0.79A,<0.87.
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The CAM scaling hypothesis for the magnetizat[@his = maximal cluster ever considene@€VM approximation for
that its critical amplitude, defined by(T)=B*(T*—T)?  the simple cubic lattice and applied it to the Ising model. The
must diverge aB* ~(T* —T,)# 12 whereT, is the true results from this approximation have been used to extract
critical temperature an@* andB* are the estimates for the nonclassical estimates for the critical exponents. Among the
critical temperature and the critical amplitude in a given apthree methods considered for this purpose, namely the
proximation. Using the above-mentioned best estintgte CVPAM, the CAM, and the method by Tomend de Ol-
=0.221 65 for the critical temperature, a fit on the resultsiveira, the CVPAM is the only one which gives critical ex-
from the pair, cube, star cube, and 18-point CVM approxi-ponents which aréexcept for the correction to scaling expo-
mation (the plaquette approximation was discarded since ihend consistent with the most recent estimates. The CVPAM
was clearly out of the curyd got 8=0.351. Poorer results is therefore to be preferred when extrapolating CVM results
were obtained discarding, in addition to the plaquette apto the critical region. The effort needed was essentially the
proximation, the pair approximation or the star-cube ap-same in all cases, since most of the labor and computer time
proximation (3=0.415 and 0.212, respectively go into the development and solving of the CVM approxi-

The approach by Tomend de Oliveird7] is based on the mation. In particular, the computer resources needed are re-
scaling assumptiom(T.)~(T*—T.)?. The best results markably small if compared with the requirements of exten-
with this approach have been found by fitting the resultssive Monte Carlo simulations or series expansions, and the
from the pair, cube, and 18-point approximationg ( results are only slightly poorer, a feature which makes the
=0.312) and those from the cube and 18-point approxima€CVPAM an interesting technique whenever powerful com-
tions only (8=0.344). puters are not available and/or very high accuracy is not

In conclusion, | have developed an 18-poitite largest needed.
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