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Cluster-variation –Padé-approximant method for the simple cubic Ising model

Alessandro Pelizzola
Istituto Nazionale per la Fisica della Materia, Unita` Torino Politecnico, and Dipartimento di Fisica del Politecnico di Torino,

corso Duca degli Abruzzi 24, 10129 Torino, Italy
~Received 20 October 1999!

The cluster-variation–Pade´-approximant method is a recently proposed tool, based on the extrapolation of
low- and high-temperature results obtained with the cluster-variation method, for the determination of critical
parameters in Ising-like models. Here the method is applied to the three-dimensional simple cubic Ising model,
and new results, obtained with an 18-site basic cluster, are reported. Other techniques for extracting nonclas-
sical critical exponents are also applied and their results compared with those by the cluster-variation–Pade´-
approximant method.

PACS number~s!: 05.50.1q
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The cluster-variation method~CVM! @1–3# is a hierarchy
of approximations that generalizes the well-known me
field approximation and has been widely applied in the l
decades, mainly to study the equilibrium properties of cl
sical, discrete lattice models with short-range interactio
The CVM results are more and more accurate as the siz
the clusters considered increases~at least in a specific way
see below!, but the critical exponents always take the me
field ~classical! values. The issue of extracting nonclassic
critical exponents from mean field approximations has b
the subject of a certain amount of research work in rec
years. As far as the CVM is concerned, a few schemes h
been proposed in recent years to give estimates of cri
exponents from the CVM results. One of these schemes
cluster-variation–Pade´-approximant method ~CVPAM!
@4,5#, was specifically devised for the CVM and exploits
great accuracy at high and low temperatures by means o
extrapolation of the thermodynamic quantities based on P´
approximants.

In the present paper I report on an investigation on
CVM approximation for the Ising model on the simple cub
lattice with the largest basic cluster~18 sites! ever consid-
ered. The results of this approximation are used to give n
classical estimates of the three-dimensional Ising critical
ponents, using mainly the cluster-variation–Pad´-
approximant method~CVPAM!. Other schemes, like th
coherent anomaly method~CAM! @6# and an approach by
Toméand de Oliveira@7# are also considered.

I shall study the Ising model on the simple cubic lattic
with nearest-neighbor~NN! interactions only, described b
the reduced Hamiltonian

H
kBT

52K(̂
i j &

sisj , ~1!

whereK is the ~reduced! interaction energy,si561 is the
usual Ising variable at sitei, the summation runs on NN
pairs, andkB andT are, as customary, Boltzmann’s consta
and absolute temperature, respectively.

The CVM is a variational method based on the minimiz
tion of a free energy density which is obtained@2,3# by trun-
cating the cumulant expansion of the exact variational p
PRE 611063-651X/2000/61~5!/4915~5!/$15.00
-
t
-

s.
of

n
l
n

nt
ve
al
he

an
de

e

n-
-

,

t

-

-

ciple of equilibrium statistical mechanics. The approxima
free energy density depends on the density matrix~matrices!
of the largest cluster~s! entering the expansion, which com
pletely determines the approximation. The simple cubic Is
model has been investigated, using the CVM, by Kikuchi@1#
in the NN pair, square and cube approximations, and by
present author@8# in the star-cube approximation. Here
shall use the 18-point approximation which is obtained
choosing as the basic cluster the 33332 cluster obtained by
joining four cubes as in Fig. 1, which is the largest clus
ever considered for this lattice. The choice of this cluste
motivated by Schlijper’s observation@9# that, due to the ex-
istence of a transfer matrix for the model, accuracy can
increased by enlarging the basic clusters ind21 dimensions
only, whered is the lattice dimensionality. One could imag
ine a series~the generalization of the so-calledC series by
Kikuchi and Brush@10#! of basic clusters made ofL3L
32 sites, where forL52 one has the cube approximatio
for L53 the present one, and forL.3 approximations that
cannot be dealt with using current computers.

Following An @2#, the ~reduced! free energy density to be
minimized can be written in the form

f ~r18!523K Tr~s1s2r4!1Tr~r18 ln r18!22 Tr~r12 ln r12!

2Tr~r9 ln r9!1Tr~r8 ln r8!12 Tr~r6 ln r6!

2Tr~r4 ln r4!, ~2!

FIG. 1. The 18-point basic cluster and its subclusters.
4915 ©2000 The American Physical Society
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TABLE I. Comparison of various CVM estimates for the critical point with the best estimates.

Method Pair Square Cube Star cube 18 point Best estima
@1# @1# @1# @8# ~present! @13–17#

Kc 0.20273 0.21693 0.21829 0.2187 0.2199 0.22165
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where rn denotes the density matrix of then-point cluster
~see Fig. 1!, while Tr(s1s2r4) is the NN correlation (s1 and
s2 being any NN sites on the square plaquette!.

The free energy density can be regarded as depende
r18 only, because the subcluster density matrices can be
fined as suitable partial traces ofr18. Since the Hamiltonian
is classical, the density matrices are diagonal, and hence
free energy density depends, in principle, on the 218 diagonal
elements ofr18 corresponding to the spin configurations
the 18-point cluster. These elements are, however, no
independent. First of all, the density matrices must be n
malized according to Trr1851. In addition, many element
are degenerate because of the lattice symmetries. The no
generater18 elements turn out to be 17676, a rather sm
number if compared with 2185262144. Taking into accoun
lattice symmetries the size of the problem is reduced b
factor slightly smaller than 16, which is the number of e
ments of the symmetry group of our 18-point basic clus
Finally, it must be observed thatr12 can be defined in dif-
ferent ways as a partial trace ofr18. In order to ensure tha
these different traces yield the same density matrix one
to impose 1134 constraints on the elements ofr18. Once
these constraints are satisfied no ambiguity is left in the d
nition of the other subcluster density matrices. Therefo
one is left with the problem of finding the minimum of
function of 17676 variables, with 1134~leaving apart the
trivial normalization constraint! linear constraints among
them. The problem can be easily treated in the framewor
the natural iteration method~NIM ! @11,12#, developed by
Kikuchi for the solution of the CVM variational problem
The solution for a single value ofK ~not too close to the
critical point! can be found on a modern personal compu
in a time of the order of ten minutes.

The accuracy of the present approximation can be

TABLE II. Comparison of our estimate of the magnetizatio
with that by Talapov and Blo¨te.

T51/K m ~present work! m ~Talapov and Blo¨te @17#!

3.4 0.8972562 0.8972440
3.5 0.8806417 0.8806366
3.6 0.8616750 0.8616735
3.7 0.8399256 0.8399255
3.8 0.8148173 0.8148161
3.9 0.7855490 0.7855416
4.0 0.7509519 0.7509251
4.1 0.7092094 0.7091249
4.2 0.6572414 0.6569722
4.3 0.5891051 0.5881361
4.4 0.4905811 0.4859045
4.5 0.3067063 0.2378014
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sessed in several ways. For instance, I have compare
Table I the presentKc value with those from other CVM
approximations and with the best estimates@13–17#. Another
interesting check is the comparison, in Table II, of our ma
netization valuesm5^si& with those given by the formula by
Talapov and Blo¨te @17#, determined on the basis of hig
precision simulations and finite size scaling. It is interest
to observe that the best agreement between the two met
occurs in the middle of the temperature range conside
@which lies within the temperature ranget512Kc /K
P(0.0005;0.26), where Talapov and Blo¨te regard their result
as very accurate#. For T51/K53.7 the two magnetizations
differ only by 1027. For larger temperatures our results a
certainly less accurate than those by Talapov and Bl¨te,
while the inverse must be true for smaller temperatures~the
result by Talapov and Blo¨te is significantly smaller than 1 a
very low temperatures and has a maximum aroundT
51.85).

In order to obtain nonclassical estimates of the criti
exponents, I shall now apply the CVPAM according to t
rules outlined in@4,5#. In the CVPAM one computes a ther
modynamical functionF for a set of temperature values in
range where the CVM approximation can be regarded
very accurate. These values are then used as a basis fo
trapolation by means of Pade´ approximants and their gene
alizations.

As a first step I shall consider the low-temperature m
netization as a function of the variablex5e2K. In order to
determine a temperature rangex,xmax in which the 18-point
CVM is very accurate, I compare it with a lower order CVM
approximation. Although the star-cube approximation
slightly more accurate, I choose the cube approximation
this purpose, since, as I mentioned above, the cube and
point approximations can be thought of as belonging to
same series. Requiring that the magnetization differenc
less than the empirically determined@5# thresholde51025, I
obtainxmax50.75. The functionm(x) now has to be extrapo
lated to estimate its singular properties, taking into acco
also confluent singularities, which is corrections to scali
To this end I use Adler’s generalizations@18–20#, usually
denoted byM1 andM2, of the ordinary Pade´-approximant
method~I recall that an@L,M # Padéapproximant is simply
the ratio of two polynomials of degreeL and M @21,22#!.
Given a functionF(x) with a singularity that can be assume
of the form (xc2x)2l@11a(xc2x)D1#, methodM1 consid-
ers Pade´ approximants to the logarithmic derivative of th
function

B~x!5lF~x!2~xc2x!
dF

dx
~3!

for assigned xc and l. The dominant singularity in
(d/dx)ln B(x) is a pole atxc with residuel2D1 if D1,1
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FIG. 2. D1 vs b plot obtained by methodM1,
for Tc54.512~a!, 4.513~b!, 4.514~c!, and 4.515
~d!, using @L,M # approximants with 3<L
<5, L21<M<L11.
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and l21 otherwise. MethodM2 considers instead, for as
signedxc andD1, Pade´ approximants to

G~y!52D1~y21!
d ln F

dy
, y512S 12

x

xc
D D1

, ~4!

which should converge tol for y51. In the CVPAM, the
function d ln B/dx or G(y) is evaluated atL1M11 equally
spaced pointsxn5xmax2ndx, x50,1, . . .L1M and then
an @L,M # Padéapproximant is determined by interpolatio
The value of the spacingdx must be adjusted empirically s
that the sets of linear equations which must be solved for
interpolation are not badly conditioned. For the magneti
tion, the best conditioned sets of equations are obtained
dx50.015.

Applying methodM1 to our magnetization estimates w
have obtained the correction to scaling exponentD1 as a
function of the critical exponentb for several values of the
trial critical temperatureTc51/Kc . It is known @20# that the
plots given byM1 have a different curvature above and b
low the critical temperature. In the ordered phase theD1
versusb plot is bent upward, while in the disordered phase
is bent downward. Using this criterion we can locate t
critical temperature in the range 4.512<Tc<4.515, which
corresponds to 0.22148<Kc<0.22163, in agreement with
the most recent estimates@13–17#. From the corresponding
plots, reported in Fig. 2, one reads the estimates 0.323,b
,0.332 for the magnetization critical exponent and 0
,D1,0.82 for the correction to scaling exponent. As in t
case of the face-centered-cubic lattice@5#, the critical expo-
nent result is consistent with recent estimates@13,17#, while
the correction to scaling one is substantially higher. Meth
M2 does not provide a clearcut way to estimateTc , but
using the result byM1 as an input we get~see Fig. 3!
0.322,b,0.331 and 0.79,D1,0.87.
e
-
or

-

t
e

5

d

I tried to analyze the high-temperature susceptibility d
~which typically give much better results than the low
temperature one! in the same way. I considered the susce
tibility as a function of the variablew5tanhK and deter-
mined a regionw,wmax of the disordered phase in whic
the 18-point CVM approximation can be regarded as v
accurate by comparing the NN correlation~which is
bounded, and hence is better than the susceptibility for s
a test! with that given by the cube approximation. The tw
estimates differ by less thane51025 whenw,wmax50.13.
Unfortunately, both methodsM1 andM2 failed to converge
and I had to resort to ordinary Pade´ approximants for the
logarithmic derivative of the susceptibility. The points fo
the interpolation were chosen as described previously, wi
spacingdw50.003. Results for the critical exponentg from
@L,L# approximants biased with the above estimates forTc
are reported in Table III. Also including results from@L,L
61# approximants I can conclude 1.237,g,1.248, which
again is consistent with the most recent estimates.

Finally, I have tried to analyze the magnetization data
means of other techniques, namely the CAM@6# and a simi-
lar approach by Tome´ and de Oliveira@7#.

TABLE III. Critical exponent g from biased@L,L# approxi-
mants.

Tc

L
4.512 4.513 4.514 4.515

4 1.24748 1.24520 1.24296 1.24076
5 1.24748 1.24519 1.24289 1.24058
6 1.24748 1.24502 1.24217 1.23895
7 1.24749 1.24505 1.24228 1.23922
8 1.24748 1.24482 1.24155 1.23769
9 1.24749 1.24483 1.24156 1.23769
10 1.24746 1.24487 1.24207 1.23905
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FIG. 3. b vs D1 plot obtained by methodM2,
for Tc54.512~a!, 4.513~b!, 4.514~c!, and 4.515
~d!, using@L,M # approximants with 3<L<5, L
21<M<L11.
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The CAM scaling hypothesis for the magnetization@6# is
that its critical amplitude, defined bym(T).B* (T* 2T)1/2

must diverge asB* ;(T* 2Tc)
b21/2, whereTc is the true

critical temperature andT* andB* are the estimates for th
critical temperature and the critical amplitude in a given a
proximation. Using the above-mentioned best estimateKc
50.221 65 for the critical temperature, a fit on the resu
from the pair, cube, star cube, and 18-point CVM appro
mation ~the plaquette approximation was discarded sinc
was clearly out of the curve! I got b50.351. Poorer results
were obtained discarding, in addition to the plaquette
proximation, the pair approximation or the star-cube a
proximation (b50.415 and 0.212, respectively!.

The approach by Tome´ and de Oliveira@7# is based on the
scaling assumptionm(Tc);(T* 2Tc)

b. The best results
with this approach have been found by fitting the resu
from the pair, cube, and 18-point approximationsb
50.312) and those from the cube and 18-point approxim
tions only (b50.344).

In conclusion, I have developed an 18-point~the largest
-

s
-
it

-
-

s

-

maximal cluster ever considered! CVM approximation for
the simple cubic lattice and applied it to the Ising model. T
results from this approximation have been used to ext
nonclassical estimates for the critical exponents. Among
three methods considered for this purpose, namely
CVPAM, the CAM, and the method by Tome´ and de Ol-
iveira, the CVPAM is the only one which gives critical ex
ponents which are~except for the correction to scaling expo
nent! consistent with the most recent estimates. The CVPA
is therefore to be preferred when extrapolating CVM resu
to the critical region. The effort needed was essentially
same in all cases, since most of the labor and computer
go into the development and solving of the CVM appro
mation. In particular, the computer resources needed are
markably small if compared with the requirements of exte
sive Monte Carlo simulations or series expansions, and
results are only slightly poorer, a feature which makes
CVPAM an interesting technique whenever powerful co
puters are not available and/or very high accuracy is
needed.
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